Part Number Hot Search : 
88523 AD8130 74LVTH1 MIW1033 FPF05 0BZXC SMH4046 M7815
Product Description
Full Text Search
 

To Download RFP70N03 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SEMICONDUCTOR
RFP70N03, RF1S70N03, RF1S70N03SM
70A, 30V, Avalanche Rated N-Channel Enhancement-Mode Power MOSFETs
Packages
JEDEC TO-220AB
SOURCE DRAIN GATE
December 1995
Features
* 70A, 30V * rDS(ON) = 0.010 * Temperature Compensating PSPICE Model * Peak Current vs Pulse Width Curve * UIS Rating Curve (Single Pulse) * +175oC Operating Temperature
DRAIN (FLANGE)
JEDEC TO-262AA
Description
The RFP70N03, RF1S70N03, and RF1S70N03SM N-Channel power MOSFETs are manufactured using the MegaFET process. This process, which uses feature sizes approaching those of LSI integrated circuits gives optimum utilization of silicon, resulting in outstanding performance. They were designed for use in applications such as switching regulators, switching converters, motor drivers, relay drivers and emitter switches for bipolar transistors. These transistors can be operated directly from integrated circuits.
PACKAGE AVAILABILITY PART NUMBER RFP70N03 RF1S70N03 RF1S70N03SM PACKAGE TO-220AB TO-262AA TO-263AB BRAND RFP70N03 F1S70N03 F1S70N03
DRAIN (FLANGE)
A
SOURCE DRAIN GATE
JEDEC TO-263AB
M A
A
DRAIN (FLANGE) GATE SOURCE
Symbol
D
NOTE: When ordering use the entire part number. Add the suffix, 9A, to obtain the TO-263AB variant in tape and reel, e.g. RF1S70N03SM9A.
G
Formerly developmental type TA49025.
S
Absolute Maximum Ratings
TC = +25oC, Unless Otherwise Specified RFP70N03, RF1S70N03, RF1S70N03SM UNITS V V V
Drain-Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .VDSS Drain-Gate Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate-Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS Continuous Drain Current RMS Continuous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM Single Pulse Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .EAS Power Dissipation TC = +25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Above TC = +25oC, Derate Linearly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .PT Operating and Storage Junction Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG
30 30 20 70 200 (Refer to UIS Curve)
A A
150 1.0 -55 to +175
W W/oC
oC
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. Copyright
(c) Harris Corporation 1995
File Number
3404.2
3-45
Specifications RFP70N03, RF1S70N03, RF1S70N03SM
Electrical Specifications
PARAMETERS Drain-Source Breakdown Voltage Gate Threshold Voltage Zero Gate Voltage Drain Current At Case Temperature (TC) = +25oC, Unless Otherwise Specified SYMBOL BVDSS VGS(TH) IDSS TEST CONDITIONS ID = 250A, VGS = 0V VGS = VDS, ID = 250A VDS=30V VGS = 0V Gate-Source Leakage Current On Resistance Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Total Gate Charge Gate Charge at 10V Threshold Gate Charge Input Capacitance Output Capacitance Reverse Transfer Capacitance Thermal Resistance Junction to Case Thermal Resistance Diode Junction to Ambient IGSS rDS(ON) tON tD(ON) tR tD(OFF) tF tOFF QG(TOT) QG(10) QG(TH) CISS COSS CRSS RJC RJA VGS = 0 to 20V VGS = 0 to 10V VGS = 0 to 2V VDS = 25V, VGS = 0V f = 1MHz VDD = 24V, ID = 70A, RL = 0.343 VGS = 20V ID = 70A, VGS = 10V VDD = 15V, ID = 70A RL = 0.214, VGS = +10V RGS = 2.5 TC = 25oC TC = 150oC MIN 30 2 TYP 20 20 40 25 215 120 6.5 3300 1750 750 MAX 4 1 50 100 0.010 80 125 260 145 8.0 1.0 80 UNITS V V A A nA ns ns ns ns ns ns nC nC nC pF pF pF
oC/W oC/W
Source-Drain Diode Ratings and Specifications
PARAMETERS Diode Forward Voltage Reverse Recovery Time SYMBOL VSD tRR TEST CONDITIONS ISD = 70A ISD = 70A, dISD/dt = 100A/s MIN TYP MAX 1.5 125 UNITS V ns
3-46
RFP70N03, RF1S70N03, RF1S70N03SM Typical Performance Curves
300 CASE TEMPERATURE (TC) = +25oC IAS, AVALANCHE CURRENT (A) 300 IDM STARTING TJ = +25oC STARTING TJ = +150oC
100 ID, DRAIN CURRENT (A)
100s
1ms OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 10ms 100ms DC VDSS MAX = 30V 1 1 10 VDS, DRAIN-TO-SOURCE VOLTAGE (V) 50
100
10
10
If R = 0 tAV = (L) (IAS)/(1.3 x RATED BVDSS - VDD) If R 0 tAV = (L/R) ln [(IAS x R)/(1.3 x RATED BVDSS - VDD) +1] 0.01 0.10 1.0 10.0 tAV , TIME IN AVALANCHE (ms)
FIGURE 1. SAFE-OPERATING AREA CURVE
FIGURE 2. UNCLAMPED INDUCTIVE-SWITCHING
80 POWER DISSIPATION MULTIPLIER 70 ID, DRAIN CURRENT (A) 60 50 40 30 20 10 0 25 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175
1.2 1.0
0.8 0.6
0.4 0.2 0 0 25 50 75 100 125 TC, CASE TEMPERATURE (oC) 150 175
FIGURE 3. MAXIMUM CONTINUOUS DRAIN CURRENT vs TEMPERATURE
FIGURE 4. NORMALIZED POWER DISSIPATION vs TEMPERATURE DERATING CURVE
PULSE DURATION = 250s, TC = +25oC ID(ON), ON STATE DRAIN CURRENT (A) 200 VGS = 10V VGS = 8V VGS = 7V 160 ID, DRAIN CURRENT (A)
VDD = 15V 200 PULSE TEST PULSE DURATION = 250s 160 DUTY CYCLE = 0.5% MAX -55oC +25oC 120 +175oC
120 VGS = 6V 80 VGS = 5V 40 VGS = 4V 0 0.0 1.5 3.0 4.5 6.0 VDS, DRAIN-TO-SOURCE VOLTAGE (V) 7.5
80
40
0 0.0
2.0 4.0 6.0 8.0 VGS, GATE-TO-SOURCE VOLTAGE (V)
10.0
FIGURE 5. TYPICAL SATURATION CHARACTERISTICS
FIGURE 6. TYPICAL TRANSFER CHARACTERISTICS
3-47
RFP70N03, RF1S70N03, RF1S70N03SM Typical Performance Curves (Continued)
rDS(ON), NORMALIZED ON RESISTANCE
2.0
PULSE DURATION = 250s, VGS = 10V, ID = 70A VGS(TH), NORMALIZED GATE THRESHOLD VOLTAGE
2.0
VGS = VDS , ID = 250A
1.5
1.6
1.2
1.0
0.8
0.5
0.4
0.0 -80
-40
0 40 80 120 TJ, JUNCTION TEMPERATURE (oC)
160
200
0.0 -80
-40
0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
200
FIGURE 7. NORMALIZED rDS(ON) vs JUNCTION TEMPERATURE
FIGURE 8. NORMALIZED GATE THRESHOLD VOLTAGE vs TEMPERATURE
BVDSS, NORMALIZED DRAIN-TO-SOURCE BREAKDOWN VOLTAGE
2.0
ID = 250A
7000 6000 C, CAPACITANCE (pF)
VGS = 0V, FREQUENCY (f) = 1MHz
1.6
5000 4000 CISS 3000 COSS 2000 1000 CRSS
1.2
0.8
0.4
0.0 -80
-40
0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC)
200
0 0
5
10
15
20
25
VDS, DRAIN-TO-SOURCE VOLTAGE (V)
FIGURE 9. NORMALIZED DRAIN SOURCE BREAKDOWN VOLTAGE vs TEMPERATURE
101
FIGURE 10. TYPICAL CAPACITANCE vs VOLTAGE
30.0 VDS, DRAIN SOURCE VOLTAGE (V) VDD = BVDSS 22.5 VDD = BVDSS 15.0 0.75BVDSS 0.75BVDSS 0.50BVDSS 0.50BVDSS 0.25BVDSS 0.25BVDSS RL = 0.43 IG(REF) = 3.0mA VGS = 10V
10.0 VGS, GATE SOURCE VOLTAGE (V)
ZJC, THERMAL RESPONSE
7.5
100 0.5 0.2 0.1 0.05 0.02 0.01 SINGLE PULSE PDM t1 t2 NOTES: 1. DUTY FACTOR, D = t1/t2 2. PEAK TJ = PDM x (ZJC) +TC 10-3 10-2 10-1 10-0 101
5.0
10-1
7.5
2.5
0.0 I G
0.0
10-2 10-5
10-4
( REF ) 20 --------------------I ( ACT ) G
t, TIME (s)
( REF ) 80 --------------------I ( ACT ) G
I G
t, RECTANGULAR PULSE DURATION (s)
FIGURE 11. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
FIGURE 12. NORMALIZED SWITCHING WAVEFORMS FOR CONSTANT GATE CURRENT. REFER TO HARRIS APPLICATION NOTES AN7254 AND AN7260
3-48
RFP70N03, RF1S70N03, RF1S70N03SM Test Circuits and Waveforms
BVDSS tP IAS VDS VDD VARY tP TO OBTAIN REQUIRED PEAK IAS VGS RG DUT + VDD VDS L
tAV
0V
tP
IL 0.01
FIGURE 13. UNCLAMPED ENERGY WAVEFORMS
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT
tON tD(ON) tR VDS 90%
tOFF tD(OFF) tF 90% VGS
VDD
RL VDS
10%
10% 0V 90% RGS
DUT
VGS 10%
50% PULSE WIDTH
50%
FIGURE 15. RESISTIVE SWITCHING WAVEFORMS
FIGURE 16. RESISTIVE SWITCHING TEST CIRCUIT
3-49
RFP70N03, RF1S70N03, RF1S70N03SM PSPICE Model for the RFP70N03, RF1S70N03, RF1S70N03SM
.SUBCKT RFP70N03 2 1 3 ; *NOM TEMP = 25oC CA 12 8 6.09e-9 CB 15 14 6.05e-9 CIN 6 8 3.40e-9 DBODY 7 5 DBDMOD DBREAK 5 11 DBKMOD DPLCAP 10 5 DPLCAPMOD
GATE
rev 9/16/92
5 10 ESG 6 +8 EVTO 9 LGATE 20 RGATE + 18 8 DPLCAP 16 MOS2 21 MOS1 CIN 8 S1A S2A 14 13 S2B 13 CA + EGS 6 -8 CB 14 + 5 EDS 8 IT 15 17 RSOURCE 11 EBREAK RIN 17 18 + RDRAIN DBREAK
DRAIN 2 LDRAIN
-
6
VTO
-
EBREAK 11 7 17 18 35.4 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTO 20 6 18 8 1 IT 8 17 1 LDRAIN 2 5 1e-9 LGATE 1 9 3.10e-9 LSOURCE 3 7 1.82e-9 MOS1 16 6 8 8 MOSMOD M=0.99 MOS2 16 21 8 8 MOSMOD M=0.01 RBREAK 17 18 RBKMOD 1 RDRAIN 5 16 RDSMOD 30.7e-6 RGATE 9 20 0.890 RIN 6 8 1e9 RSOURCE 8 7 RDSMOD 3.92e-3 RVTO 18 19 RVTOMOD 1 S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD VBAT 8 19 DC 1 VTO 21 6 0.605
1
+
DBODY
7 LSOURCE 3 SOURCE 18 RVTO 19 VBAT +
12
13 8 S1B
RBREAK
-
-
.MODEL DBDMOD D (IS=7.91e-12 RS=3.87e-3 TRS1=2.71e-3 TRS2=2.50e-7 CJO=4.84e-9 TT=4.51e-8) .MODEL DBKMOD D (RS=3.9e-2 TRS1=1.05e-4 TRS2=3.11e-5) .MODEL DPLCAPMOD D (CJO=4.8e-9 IS=1e-30 N=10) .MODEL MOSMOD NMOS (VTO=3.46 KP=47 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL RBKMOD RES (TC1=8.46e-4 TC2=-8.48e-7) .MODEL RDSMOD RES (TC1=2.23e-3 TC2=6.56e-6) .MODEL RVTOMOD RES (TC1=-3.29e-3 TC2=3.49e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-8.35 VOFF=-6.35) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-6.35 VOFF=-8.35) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2.0 VOFF=3.0) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=3.0 VOFF=-2.0) .ENDS NOTE: For further discussion of the PSPICE model consult A New PSPICE Sub-circuit for the Power MOSFET Featuring Global Temperature Options; written by William J. Hepp and C. Frank Wheatley.
3-50


▲Up To Search▲   

 
Price & Availability of RFP70N03

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X